
This is a study guide for Exam 1.  You are expected to understand and be able to answer mathematical questions on the 
following topics.  

Chapter 26 
A capacitor has charge +Q and –Q stored on two charge conductors, and a potential difference of ∆𝑉 between the 
conductors.  The capacitance is found by  

𝐶 =
𝑄
∆𝑉

 
 
where C is always constant (thus the magnitudes of ∆𝑉 and Q are used).  Capacitance is a physical quantity for an object 
that does not change, regardless of the stored charge or potential applied.  Units of capacitance:  

1𝐹 =
1𝐶
1𝑉

 
 
For a parallel plate conductor, 

  𝐶 =
𝜖!𝐴
𝑑

 𝐸 =
𝜎
𝜖!

 ∆𝑉 = 𝐸𝑑 

 
The energy stored on a capacitor is found by 

𝑈 =
𝑄!

2𝐶
=
1
2
𝑄∆𝑉 =

1
2
𝐶(∆𝑉)!  

 
This	
  energy	
  could	
  be	
  considered	
  as	
  being	
  stored	
  in	
  the	
  electric	
  field.	
  	
  Since	
  ∆𝑉 = 𝐸𝑑	
  and	
  𝐶 = 𝜖!𝐴/𝑑,	
  we	
  can	
  say	
  

𝑈 =
1
2
𝜖!𝐴
𝑑

𝐸!𝑑! =
1
2
𝜖!𝐴𝑑 𝐸!	
  

	
  
Since	
  this	
  electric	
  energy	
  is	
  within	
  the	
  volume	
  Ad	
  of	
  the	
  capacitor,	
  the	
  energy	
  per	
  unit	
  volume	
  is	
  found	
  by	
  

𝑢! =
𝑈
𝐴𝑑

=
1
2
𝜖!𝐸!	
  

 
This	
  expression	
  is	
  valid	
  for	
  any	
  electric	
  field,	
  not	
  just	
  for	
  capacitors. 
 
 
Parallel Combination 
Two capacitors are in parallel when they are both attached to the same points in the circuit, and they both have the same 
electric potential: 

∆𝑉! = ∆𝑉! = 𝛥𝑉  
 
The two capacitors will accumulate a total charge equal to 

𝑄!"!#$ = 𝑄! + 𝑄!  
 
This can be used to create an equivalent capacitor with capacitance Ceq.  The equivalent capacitor would act as though the 
two capacitors were really one, storing a charge Qtotal across a potential ∆𝑉.   

𝐶!"∆𝑉 = 𝑄! + 𝑄! = 𝐶!∆𝑉! + 𝐶!∆𝑉! = (𝐶! + 𝐶!)∆𝑉 
 
Thus, the equivalent capacitance can be found by summing the capacitance of capacitors in parallel.  

𝐶!" = 𝐶! + 𝐶! +⋯ 
 
Series Combination 
When capacitors are in series, the charge removed from one capacitor is sent to the next.  Thus, the change in charge for 
each capacitor is the same: 

𝑄! = 𝑄! = 𝑄  
 



An equivalent capacitor would then have +Q on one plate, and –Q on the opposite. The total voltage across the capacitors 
in series is shared, so 

∆𝑉!"! = ∆𝑉! + ∆𝑉!  
 
To find the equivalent capacitor, we can say 

∆𝑉!"! = ∆𝑉! + ∆𝑉! =
𝑄!
𝐶!
+
𝑄!
𝐶!

=
𝑄
𝐶!"

  

 
Since 𝑄! = 𝑄! = 𝑄, the equivalent capacitance would be 

1
𝐶!"

=
1
𝐶!
+
1
𝐶!
+⋯  

 
Dielectrics 
A	
  dielectric	
  is	
  a	
  nonconducting	
  material	
  such	
  as	
  rubber	
  of	
  glass.	
  	
  Each	
  material	
  has	
  a	
  dielectric	
  constant,	
  a	
  dimensionless	
  
factor	
  κ	
  >	
  1	
  which	
  is	
  used	
  to	
  find	
  how	
  much	
  a	
  material	
  affects	
  the	
  voltage	
  across	
  a	
  capacitor	
  if	
  it	
  is	
  placed	
  between	
  the	
  
plates.	
  	
  If	
  a	
  dielectric	
  is	
  placed	
  between	
  the	
  plates	
  of	
  a	
  capacitor,	
  the	
  voltage	
  across	
  the	
  capacitor	
  will	
  change.	
  	
  	
  The	
  new	
  
voltage	
  is	
  found	
  by	
  

∆𝑉 =
∆𝑉!
  κ  

	
  

	
  
However,	
  the	
  stored	
  charge	
  on	
  the	
  capacitor	
  does	
  not	
  change.	
  	
  Thus,	
  the	
  capacitance	
  must.	
  

𝐶 =
𝑄!
∆𝑉

=
𝑄!
∆𝑉/κ

= κ
𝑄!
∆𝑉!

= κC!	
  

	
  
For	
  a	
  parallel	
  plate	
  capacitor,	
  the	
  area	
  and	
  distance	
  between	
  the	
  plates	
  doesn’t	
  change.	
  	
  Thus,	
  
	
  

C = κ
𝜖!𝐴
𝑑

	
  

 
 

Chapter 27 
The current, or rate of charge flow through an area, is found the amount of charge passing through an area in time dt: 

𝐼 =
𝑑𝑄
𝑑𝑡
  

 
The unit of current is an ampere where 1𝐴 = 1  𝐶 𝑠.  While current can be defined as the movement of positive or 
negative charges (charge carriers) in any direction, the convention is to say current is in the direction of the flow of 
positive charges.  This means that in circuits, current is the opposite direction of the motion of electrons. 
 
In order for the current to exist, an electric potential is applied through a material, which creates an electric field inside the 
conducting material, causing the charge carriers to move. 
 
Physical Model 
If a conducting wire with cross-sectional area A has n charges per volume, each with charge q, the amount of charge 
within a segment 𝛥𝑥 would be 

∆𝑄 = 𝑛𝐴𝛥𝑥 𝑞  
 
If the charge carriers move with a velocity of 𝑣! (d is for drift speed), and it takes the charges a time 𝛥𝑡 to move the 
distance 𝛥𝑥, then 



∆𝑄 = 𝑛𝐴𝑣!𝛥𝑡 𝑞 
 
The current can thus be found as a function of the charge carriers by 

𝐼!"# =
∆𝑄
∆𝑡

= 𝑛𝐴𝑣!𝑞 

Resistance 
The current density is the current per unit area, or  

𝐽 =
𝐼
𝐴
= 𝑛𝑞𝑣! 

 
and has units of A/m2.  In many materials, the current density is proportional to the electric field by 

𝐽 = 𝜎𝐸 
 
This is Ohm’s Law, where 𝜎 is a constant (not the surface charge density) called the conductivity of the material.  The 
electric potential that is applied to create the current along a length 𝑙 of the wire is 

∆𝑉 = 𝐸𝑙 
So 

𝐽 = 𝜎
∆𝑉
𝑙

 

Rearranging: 

∆𝑉 =
𝑙
𝜎
𝐽 =

𝑙
𝜎𝐴

𝐼 = 𝑅𝐼 

 
Where R is a constant for the material, called its resistance.   

𝑅 =
∆𝑉
𝐼

 

  
and has the unit of an ohm (Ω), where 1Ω = 1V/A.   The inverse of conductivity is resistivity ρ: 

𝜌 =
1
𝜎

 

  
 and has units of ohm∙meters (Ω ∙𝑚).  The resistance can then be written as 

𝑅 = 𝜌
𝑙
𝐴

 

 
The resistivity of a conductor varies with temperature according to 

𝜌 = 𝜌![1 + 𝛼 𝑇 − 𝑇! ] 
 
where 𝜌! is the resistivity of the material at temperature 𝑇!, and 𝛼 is the temperature coefficient of resistivity.  Because 
the resistance is proportional to the resistivity, 

𝑅 = 𝑅![1 + 𝛼 𝑇 − 𝑇! ] 
 
Electrical Power 
When the electrons move through a resistor, energy is transferred from the motion of the electrons to the atoms in the 
resistor, which heats the resistor up.  Power (P) is the rate at which energy is delivered to the resistor:  

𝑃 = 𝐼𝛥𝑉 = 𝐼!𝑅 =
(∆𝑉)!

𝑅
  

  



Chapter 28 
Resistors: Series Combination 
If two resistors are in series, they are in line on the same wire.  If charge passes through one, it has to pass through the 
other, so the current is the same in both resistors. 

𝐼 = 𝐼! = 𝐼!  
 
Because they are in line, the total drop in voltage across the resistors is shared between them as 

∆𝑉 = ∆𝑉! + ∆𝑉! = 𝐼!𝑅! + 𝐼!𝑅!  
 
An equivalent resistor would have the total voltage across both resistors, follow the relation 

∆𝑉 = 𝐼𝑅!" = 𝐼!𝑅! + 𝐼!𝑅! 
 
So we can say the equivalent resistance will be the sum of the other resistors in series. 

𝑅!" = 𝑅! + 𝑅! +⋯  
 
Parallel Combination 
If the resistors are set up in parallel, they each have the same potential difference across them. 

∆𝑉 = ∆𝑉! = ∆𝑉!  
 
The charges flowing through the system may flow through only one of the resistors in parallel.  The total current will then 
be the sum of the currents flowing through all of the resistors. 

𝐼 = 𝐼! + 𝐼! =
∆𝑉
𝑅!

+
∆𝑉
𝑅!

 

 
The current flowing through an equivalent resistor would then be 

𝐼 =
∆𝑉
𝑅!"

=
∆𝑉
𝑅!

+
∆𝑉
𝑅!

 

 
Therefore, for series in parallel, the equivalent resistance would then be 

1
𝑅!"

=
1
𝑅!
+
1
𝑅!

+⋯ 

 
This means the equivalent resistance is always less than the smallest resistor. 
 
Kirchhoff’s Rules 
Two principles in Kirchhoff’s Rules: 

1. The sum of currents in and out of a junction is zero. 

𝐼 = 0
!"#$%&'#

 

 
This is because more charges can’t enter a junction than leaves, or vice versa, because this would require charge to 
accumulate or deplete.  Current entering a junction is written as +𝐼 while current leaving a junction is −𝐼. 
 

2. The sum of potential differences across all elements around any closed circuit loop is zero. 

𝛥𝑉 = 0
!"#$%&  !""#

 

 



This is due to conservation of energy.  If a charge moves through the circuit, it must have the same potential energy if it 
returns to where it started.  It increases in potential energy when the charge passes through a battery from the negative to 
positive terminal (the positive terminal of a battery in a circuit diagram is drawn with a longer line). 
 
When following a path around a current loop, follow these rules: 

1. If you pass through a resistor in the direction of the current, then ∆𝑉 = −𝐼𝑅. 
2. If you pass through a resistor opposite the direction of the current, then  ∆𝑉 = 𝐼𝑅. 
3. If you pass through a battery from negative to positive terminals, then ∆𝑉 =   Ɛ. 
4. If you pass through a battery from positive to negative terminals, then ∆𝑉 =   −Ɛ. 

 
Equations can be made following Kirchhoff’s Rules to find the characteristics of a circuit (currents, resistances, voltages).  
The number of equations must be at least as many as the unknowns.  
 
Charging an RC Circuit 
A circuit combination of a resistor and a capacitor is called an RC Circuit.  Assume the capacitor is initially uncharged.  
When power is applied, the potential across the capacitor increases as the capacitor charges.  Once the capacitor is 
charged to where the potential across it is the same as the power supply, the current in the circuit stops.  Using the loop 
rule, 

Ɛ −
𝑞
𝐶
− 𝐼𝑅 = 0 

 
However, while the capacitor is being charged, there is a current and q and I are both functions of time.  At time 𝑡 = 0, 
the charge on the capacitor is zero (𝑞 = 0), so the initial current is also the maximum current where 

𝐼!"# = 𝐼! =
Ɛ
𝑅

 

 
When the capacitor is charged, the current will be zero.  The maximum charge Q on the capacitor will then be   

𝑄!"# = 𝐶Ɛ 
 
The charge on the capacitor as a function of time is found by  

𝑞 𝑡 = 𝐶Ɛ 1 − 𝑒!
!
!" = 𝑄!"# 1 − 𝑒!

!
!"  

 
As for the current in the system, it is found by 

𝐼 𝑡 =
𝑑𝑞
𝑑𝑡

=
Ɛ
𝑅
𝑒!

!
!" = 𝐼!"#𝑒

! !
!"  

 
These fit our limits for initial current (when 𝑡 = 0) and maximum charge (when 𝑡 = ∞) on the capacitor.  The quantity 
RC is called the time constant 𝜏, so  

𝜏 = 𝑅𝐶 
 
This is the amount of time for the current to decrease to 𝑒!! of its initial value (after time 𝜏, 𝐼 = 0.368𝐼!), and has units of 
seconds.  This means for charging, 

𝐼 𝑡 = 𝐼!"#𝑒
!!! 

and 

𝑞 𝑡 = 𝑄!"# 1 − 𝑒!
!
!  

 
 



Discharging an RC Circuit 
Assume the capacitor is charged to a maximum charge Q, and the battery is removed from the circuit.  If we allow the 
capacitor to discharge, the current will go the other way around the circuit than it did before.  Using the loop rule, 

−
𝑄
𝐶
− 𝐼𝑅 = 0 

So the initial current is  

𝐼 = −
𝑄
𝑅𝐶

 

The charge on the capacitor is found by 

𝑞 𝑡 = 𝑄!"#𝑒
! !
!" = 𝑄!"#𝑒

!!! 
 
Differentiating with respect to time, we find the current in the circuit as a function of time is: 

𝐼 𝑡 =
𝑑𝑞
𝑑𝑡

= −
𝑄
𝑅𝐶

𝑒!
!
!" = −𝐼!"#𝑒

!!! 

 
The negative just shows the current is going the opposite direction as before, and the time constant is again RC. 
 


